
6. Finitely generated abelian groups and lattices.

The contents of this section are not of a number theoretical nature. The results are used
in the next sections. Our first subject is the structure of finitely generated abelian groups.
We expain the relation between indices of finitely generated free groups and determinants.

The second part of this section concerns lattices. Lattices are finitely generated groups
with additional structure. We explain the relations between indices of free groups and
certain volumes.

An abelian group is said to be free of rank n, if it is isomorphic to Zn. A subgroup
B of a free group A ∼= Zn is said to have rank m if the Q-vector space generated by B in
Qn has dimension m.

For any two integers a and b, the notation a|b means that a divides b.

Theorem 6.1. Let A ∼= Zn be a free group of rank n and let B ⊂ A be a subgroup. Then

(a) The group B is free of rank m ≤ n.

(b) There exists a Z-basis e1, . . . , en of A and integers a1, . . . , am ∈ Z≥0 such that
a1|a2| . . . |am and such that the elements a1e1, . . . , amem form a Z-basis for B. The
integers a1, . . . , am are unique.

Proof. Let B be a non-zero subgroup of A. Consider the group Hom(A,Z) of functionals
f : A −→ Z. For every f : A −→ Z the image f(B) is an ideal in Z. Since Z is Noetherian,
there is a maximal element in the collection of ideals {f(B) : f : A −→ Z}. Since B 6= 0,
the maximal element f(B) is not the zero ideal. Let a denote a positive generator and let
v ∈ B be an element for which f(v) = a.

We claim that a divides g(b) for every g : A −→ Z. Indeed, let d = gcd(g(v), a) and
let u, v ∈ Z such that ua + vg(v) = d. Then d is the value of the functional uf + vg at
v. Since d divides a, it follows from the maximality of a that d is equal to a. Therefore a
divides g(v).

In particular, a divides all coordinates of v. We let w = 1
av. Then we have f(w) = 1

and in addition

A = wZ⊕ ker(f),

B = vZ⊕ (ker(f) ∩B).

This follows easily from the fact that for every x ∈ A one has that x = f(x)·w+x−f(x)·w.
If, moreover, x is in B, then f(x) is in aZ by definition of a. We leave the easy verifications
to the reader.

Now we prove part (a) by induction with respect to the rank m of A. If m = 0 the
group B is zero and the statement is trivially true. If m > 0, we can split A and B as
we did in the discussion above. The group ker(f) ∩ B obviously has rank at most m.
Since B = vZ⊕ (ker(f)∩B) has clearly strictly larger rank, we conclude that the rank of
ker(f)∩B is at most m−1. By induction we see that this is a free group and consequently
B is free as well. This proves (a)

Part (b) is proved by induction with respect to n. If n = 0 the statement is trivially
true. If n > 0, either B = 0, in which case the result is clear, or B > 0. In the latter case
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we can split A and B as explained above:

A = wZ⊕ ker(f),

B = vZ⊕ (ker(f) ∩B).

The group ker(f) has rank at most n−1. By (a) it is free of rank at most n−1. By induction
there exists a basis e2, . . . , en of ker(f) and integers a2, . . . , am such that a2e2, . . . , amem
is a basis for ker(f)∩B. We now take e1 = w and a1 = a. To complete the proof it suffices
to verify that a divides a2. If there is no e2, there is nothing to prove. If there is, we define
a functional g by g(e1) = g(e2) = 1 and g(ei) = 0 for i > 2. We see that a is in g(B) and
therefore, by maximality of a, that g(B) = (a). Since a2 ∈ g(B) the result follows.

Corollary 6.2.
(a) For any finitely generated abelian group G there exist unique integers r ≥ 0 and

a1, a2, . . . , at ∈ Z>1 satisfying a1|a2| . . . |at and such that

A ∼= Zr × Z/a1Z× . . .Z/atZ.
The abelian group G is finite if and onbly if r = 0.

(b) Let A ∼= Zn be a free group of rank n and let B ⊂ A be a subgroup. Then B has
finite index in A if and only if rk(B) = rk(A).

Proof. (a) Let G be a finitely generated group and let n be an integer such that there is
a surjective map

θ : Zn −→ G.

By Theorem 6.1 there is a basis e1, . . . , en of Zn and there exist positive integers
a1, a2, . . . , am such that a1|a2| . . . |am and a1e1 . . . , amem is a basis for B = ker(θ). It

follows at once that
A ∼= Zn−m × Z/a1Z× . . .× Z/amZ

as required. The uniqueness of the ai’s follows easily by considering A modulo aiA for
various i.
(b) Choose a Q-basis e1, . . . , en of A such that the subgroup B has a1e1, . . . , amem as a
basis. We have that

A/B ∼= Zn−m × Z/a1Z× . . .× Z/amZ

and clearly rk(B) = rk(A) if and only if n = m if and only if [A : B] = #(A/B) is finite.
This proves (b).

Corollary 6.3. Let M be a n × n-matrix with integral coefficients. Let A = Zn and B
its subgroup MA = {Ma : a ∈ A}. Then
(a) The index of B in A is finite if and only if det(M) 6= 0.
(b) If det(M) 6= 0 then [A : B] = |det(M)|.
Proof. According to Theorem 6.1 we can choose a Z-basis e1, e2, . . . , en of A such that
B = a1e1Z⊕ . . .⊕ amemZ. The matrix M is therefore conjugate to

M ′ =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 .
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We see that A/B is infinite if and only if one of the ai is zero. This proves (a). Part (b)
follows from the fact that det(M) = det(M ′) =

∏
i ai.

Next we apply the results on finitely generated abelian groups to number theory.

Corollary 6.4. Let f ∈ Z[T ] be a monic irreducible polynomial. Let α denote a zero and
let F = Q(α). Then the index [OF : Z[α]] is finite and we have

Disc(f) = [OF : Z[α]]2 ·∆F .

Proof. Let ω1, . . . , ωn denote a Z-basis for the ring of integers of F . There is then a
matrix M with integral coefficients such that

M


ω1

ω2
...
ωn

 =


1
α
...

αn−1

 .

Therefore we have
(det(M))2∆F = ∆(1, α, α2, . . . , αn−1)

and hence, by Cor. 6.3 and Prop. 3.8, we have

[OF : Z[α]]2∆F = Disc(f)

as required.

Corollary 6.5. Let F be a number field and let x ∈ OF . Then the norm of the OF -ideal
generated by x is equal to the absolute value of the norm of x. In other words, we have

N((x)) = |N(x)|.

Proof. Let M denote the matrix which expresses the multiplication by x with respect to
a Q-basis of F . We have

|N(x)| = |det(M)| by definition,

= [OF : im(M)] by Cor. 6.3,

= #OF /(x) = N((x)).

as required.

Many of the finitely generated groups that arise in algebraic number theory are
equipped with extra structure. Very often they are, in natural way, lattices. In the rest of
this section we study lattices. We show that the ring of integers OF of an algebraic number
field F admits a natural lattice structure. In section 9 we will see that, in a certain sense,
the unit group O∗F admits a lattice structure as well.

Definition. Let V be a Euclidean space, i.e. a finite dimensional real vector space equipped
with a scalar product. A subset L ⊂ V is called a lattice if it is of the form L =

∑
i Zei

for some basis e1, . . . , en of the vector space V .

An easy example of a lattice is the group Zn contained in the vector space Rn equipped
with the usual scalar product.
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Proposition 6.6. Let V be a real vector space equipped with scalar product and let
L ⊂ V be a subgroup. Then
(a) L is a lattice.
(b) L is discrete and cocompact.
(c) L generates V over R and for every bounded set B ⊂ V one has that B ∩ L <∞.

Proof.(a) ⇒ (b) The subgroup L is clearly discrete. We have that V =
∑

i eiR and
therefore V/F , being a continuous image of the compact space

∑
i ei[0, 1] is compact.

(b)⇒ (c) Suppose L is discrete and cocompact. Let W ⊂ V be the subspace generated by
L. Then there is a continuous surjection V/L −→ V/W . It follows that the vector space
V/W is compact. Therefore it is zero. If there were a bounded set B with B ∩ L infinite,
then there would be an accumulation point of elements in L, so that L is not discrete.
(c) ⇒ (a) Since L generates V over R, there is an R-basis e1, . . . , en ∈ L of V . The set
B =

∑
i ei[0, 1] is bounded and therefore the following union is finite:

L = ∪
x∈B∩L

(x+
∑
i

eiZ).

We conclude that the index m = [L :
∑

i eiZ] is finite and that mL ⊂
∑

i eiZ. By
Theorem 6.1 the group mL is free and by Cor. 6.2 it is of rank n. We conclude that L is
free of rank m as well. This concludes the proof of the proposition.

Definition. Let V be a Euclidean space. Let L ⊂ V be a lattice. The covolume of L is
defined by

covol(L) = vol(V/L).

Equivalently, the covolume of L is the volume of the fundamental domain of L in V . In
other words, if v1, . . . , vn is a Z-basis for L, then

covol(L) = vol({
∑
i

λivi : 0 ≤ λi < 1 for 1 ≤ i ≤ n}).

For example, the Z-span of the columns of an invertible n×nmatrix A with real coefficients
is a lattice in Rn. Its covolume is equal to |det(A)|.
Proposition 6.7. Let V be an n-dimensional Euclidean space. Let L ⊂ V be a lattice.
Then
(a) If L′ ⊂ L is a sublattice of L, then covol(L′) = [L′ : L]covol(L).
(b) If f : V −→ V is an invertible linear map, then f(L) is also a lattice. If M is a

representative matrix of f with respect to an orthonomal basis of V , then covol(f(L))
is equal to det(M)covol(L).

Proof. (a) A fundamental domain of L′ is the union of [L′ : L] translates of a fundamental
domain of L. To see (b), we choose an orthonormal basis e1, . . . , en of V and let A be an
n × n-matrix whose columns generate L. Then f(L) is the Z-span of the columns of the
matrix MA. Therefore the covolume of f(L) is equal to det(MA) = det(M)covol(L) as
required.

The following example is very important.
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Example 6.8. Let F be a number field of degree n. The complex vector space FC =∏n
i=1 C admits a natural Hermitian product with respect to which its canonical basis is

orthonormal. This Hermitian product on FC restricts to a scalar product on FR. The
image of the ring homomorphism

Φ : OF −→ FC
∼=

n∏
i=1

C

given by Φ(x) = (φ1(x)), . . . , φn(x)) is contained in FR and is a lattice in FR.

Proof. Let ei denote the canonical basis of FC =
∏n

i=1 C. We equip FC with the Hermitain
product given by

〈ei, ej〉 =

{
0; when i 6= j,
1. when i = j.

Since the same identities hold for for the trace of eiej , the Hermitian product on FC is
given by 〈z, w〉 = Tr(zw) for z, w ∈ Cn. To see that it induces a scalar product on FR, it
suffices to see that it is positive definite. Since the trace of zz of an element in FR of the
form

z = (x1, . . . , xr1 , z1, z1, . . . , zr2 , zr2)

is equal to
∑r1

i=1 x
2
i + 2

∑r2
i=1 |zi|2, which is ≥ 0 and only vanishes when z = 0, this is

indeed the case.
By Lemma 2.5 the map Φ maps Q-bases of F to R-bases of FR. In particular, every

Z-base of OF is mapped to an R-base of FR. This implies that Φ(OF ) is a lattice in FR.

Corollary 6.9. Let F be a number field. The image of a fractional ideal I under Φ :
F −→ FR is a also lattice.

Proof. First suppose that I is an ideal of OF . Then it contains a non-zero integer m. We
have inclusions

mOF ⊂ I ⊂ OF .

Since Φ(mOF ) is a lattice, the first inclusion shows that I contains a basis of FR. Since
Φ(OF ) is a lattice, the second inclusion shows that Φ(I) ∩ B is finite for every bounded
subset B ⊂ FR. Therefore Φ(I) is a lattice.

In general, let α ∈ F ∗ an element for which that J = αI is a non-zero ideal. Then J
is a lattice and hence is the Z-span of an R-basis ω1, . . . , ωn of FR. Since αω1, . . . , αωn is
also an R-basis of R, the fractional ideal I is also a lattice, as required.

Proposition 6.10. Let F be a number field of degree n.
(a) The covolume of the lattice OF or rather Φ(OF ) in FR is given by

covol(OF ) =
√
|∆F |.

(b) Let I be a fractional ideal, the covolume of I in FR is given by

covol(I) = N(I)
√
|∆F |.
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Proof. Let ω1, . . . , ωn be a Z-basis of OF . Then a Z-basis for the image of OF in FR

is given by the vectors (φk(ωj)) for 1 ≤ j ≤ n. The covolume of Φ(OF ) is equal to the
absolute value of the determinant of the matrix whose colums are the coordinates of the
vectors (φk(ωj)) with respect to some ortonormal basis of FR. Since any orthonormal basis
of FR is also an orthonormal basis of FC, the covolume is also simply the absolute value
of the determinant of the matrix (φk(ωj)), which is

√
|∆F |.

(b) If I is an ideal, then I ⊂ OF are lattices and the result follows from Prop. 6.7. In
general, let I be fractional ideal and let α ∈ F ∗ be such that J = αI is an ideal of
OF . Then I is the image of J under the multiplication by α map. Therefore we have
covol(I) = N(α)−1covol(J) = N(α)−1N(J)

√
|∆F | = N(I)

√
|∆F | as required.

6.1. Let A =
(
3
0

)
Z +

(
0
5

)
Z ⊂ Z2. Find a basis of Z2 as in Theorem 6.1.

6.2 Let H in Z3 be the subgroup generated by (1, 1, 2), (5, 1, 1) abd (−1,−5,−3). What is the
structure of the finite abelian group Z3/H?

6.3 Let L = {(x, y, z) ∈ Z3 : 2x + 3y + 4z ≡ 0 (mod 7)}. Show that L ⊂ R3 is a lattice. Find a
Z-basis and calculate its covolume.

6.4 Let H ⊂ Z3 be the subgroup generated by (1, 1, 1), (0, 1, 1) and (−1, 2, 3) and let A be the

matrix

(
1 0 −2
0 2 1
3 1 1

)
. Show that A(H) is a lattice in R3 and compute its covolume.

6.5 For a quaternion z = a + bi + cj + dk (with a, b, c, d ∈ R), the reduced trace is given by
Tr(z) = z + z = 2a.
(a) Show that 〈z, w〉 = 1

2
Tr(zw〉 for z, w ∈ H, defines a scalar product on the underlying

4-dimensional real vector space H.
(b) Show that Z + iZ + jZ + kZ is a lattice in H and compute its covolume.
(c) Compute the covolume of the subring of Hurwitz quaternions.

6.6 Let F be a number field. Suppose R ⊂ F is a subring with the property that its image in
FR is a lattice. Show that R ⊂ OF .

6.7 (Euclidean imaginary quadratic rings.) Let F be an imaginary quadratic number field. We
identify OF with its Φ-image in FR = C.
(a) Show that OF is Euclidean for the norm if and only if the closed circles with radius 1

and centers in OF cover C.
(b) Show that OF is Euclidean for the norm if and only if ∆F = −3,−4,−7 or −11.
(c) Show that the rings of integers of the real quadratic fields F with ∆F = 5, 8 and 12 are

Euclidean for the norm.
6.8*Let L be a free abelian group of rank r. Let Q(x) be a positive definite quadratic form on L.

Supppose that for every B ∈ R there are only finitely many x ∈ L with Q(x) < B. Show
that there is an injective map I : L ↪→ Rr such that i(L) is a lattice and ||i(x)|| = Q(x). Here
||v|| denotes the usual length of a vector v ∈ Rr.

6.9 Let L ⊂ Rn be a lattice. Show that

lim
t→∞

1

tn
#{(v1, . . . , vn) ∈ L : |ai| ≤ t for all 1 ≤ i ≤ n} =

2n

covol(L)
.
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